Regulatory Challenges for Gene Therapy for Batten Disease

Rare Disease Scientific Workshop
Washington, DC

R. Crystal
Department of Genetic Medicine
Weill Cornell Medical College
9-13-18
Disclosure

• I have equity in and/or a consultant to the following companies with gene therapy programs: Adverum, ReGenX, BioMarin, XyloCor, Jannu and LEXEO
Gene Therapy for Hereditary CNS Disorders

• Rationale – many of the hereditary CNS disorders affect the CNS; gene therapy directly to the brain bypasses the blood-brain barrier; if effective, a single administration will compensate for the genetic abnormality
Late Infantile Neuronal Ceroid Lipofuscinoses (LINCL, Batten Disease, CLN2 Disease)

- Autosomal recessive, ~ 400-600 cases worldwide
- Disease onset ages 2-4
- Cognitive impairment, visual failure, seizures, and deteriorating motor development, leading to a vegetative state and death by ages 8-12
LINCL Is Caused by Mutations in the CLN2 Gene

- Precursor TPP-1 is secreted and taken up by the mannose-6-phosphate pathway of neighboring cells
2nd Generation Gene Therapy for LINCL

- **Brain**
- **Serotype AAVrh.10**
- **4.5 kb genome**
- **ITR**
- **CAG promoter**
- **CLN2 cDNA**
Trial Design

Child with LINCL

Screening protocol (5 genotypes)

Mild-moderate → Eligible

Family given choice to continue in screening protocol or enter treatment protocol

Not eligible → “Parallel” protocol to assess safety n=5

Untreated n=10

Treatment with AAVrh.10hCLN2 n=8

- Phenotypes assessed over 18 months
 - Clinical score
 - Quantitative MRI
Risks to *In Vivo* Gene Therapy with DNA Vectors

- Germ line gene transfer
- Recombination
- Contamination of the environment
- Persistent and/or overexpression
- Systemic or organ-specific anti-vector and/or transgene product immunity
- Off-target effects
Regulatory Challenges

• Toxicology
• Communication
• Reporting
• Control groups
Vector Toxicology Guidelines

Issue

- There is extensive experimental animal and human safety data relating to in vivo administration of DNA vectors
- Toxicology-related studies are often repetitive, and provide little additional information than what is already known

Recommendation

- Significant effort and cost could be eliminated by having periodic guidance documents that state common concepts/guidelines that could eliminate some of the repetitive toxicology work
Communication

Issue

- The FDA knows what all companies and academics are doing and the data they have generated, while the individual investigator groups know only their own data, what is public and gossip.
- This is particularly relevant in issues relating to vectors, including manufacturing, e.g., acceptable cell lines, quality of plasmids, quality of final products.

Recommendation

- When serious issues arise that the agency is aware of that may alter protocol design and manufacturing practices, it would be of significant help to provide information to the community of the FDA's concerns that can have major implications to programs based on long term commitments.
- For consideration – a symposium at the annual ASGCT meeting organized jointly by the ASGCT and the FDA to discuss these issues.
Reporting

Issue

- There is now a 25 year experience with \textit{in vivo} administration of DNA vectors, and the 15 year reporting requirement for many gene therapy applications is no longer relevant to many \textit{in vivo} DNA vector applications.

Recommendation

- As articulated in the July 2018 Draft guidance document, it is rational to have reporting requirements that are vector and disease-specific, with some requiring long-term observation and others short-term or no observation at the end of the clinical protocol.

- It would be very useful for the FDA to publish a data-driven document of the 15 year monitoring data generated over the past 25 years.
Control Groups

Issue
- For many of the rare diseases, placebo studies are not feasible
- This is not specific to *in vivo* use of DNA vectors

Recommendation
- For many rare, fatal disorders, natural history studies are the only way to demonstrate efficacy
- An FDA guidance document focused on control groups would be useful, and might also be a topic for an ASGCT joint symposium
Regulatory Challenges for *In Vivo* Gene Therapy with DNA Vectors

DNA vector

Modify gene expression

Modify or prevent disease

![Diagram showing gene therapy process](image-url)