Development of RNAi Therapeutics for Rare Diseases

Saraswathy (Sara) Nochur, Ph.D.
SVP Regulatory Affairs, Alnylam Pharmaceuticals, Inc.
Cambridge, MA

Emerging Technologies for Rare Diseases
September 12, 2017
Mechanism of RNA Interference (RNAi), A Natural Endogenous Pathway

- **Synthetic siRNA**
- dsRNA
- **Cleavage**
- **Strand separation**
- Complementary pairing
- RISC
- Targeted Gene Silencing
- mRNA degradation

Natural Process of RNAi
Alnylam Platform and R&D Strategy
Building a Pipeline of Potentially Transformative Medicines

- Genetically validated, liver-expressed target gene
- Biomarker for Proof of Concept in Phase 1
- Definable path to potential approval and patient access
Hereditary ATTR (hATTR) Amyloidosis

DESCRIPTION

Orphan multi-system disease caused by mutant transthyretin (TTR) amyloid deposits in nerves, heart, GI tract, and other tissues

Significant morbidity and fatal within 2-15 years from symptom onset

PATIENT POPULATION*

~50,000 worldwide

*Ando et al., Orphanet J Rare Dis, 2013; Ruberg et al., Circulation, 2012
Peripheral Neuropathy in hATTR Amyloidosis

- **Stage 1**: 4-5 years
- **Stage 2: Early**: 2-3 years
- **Stage 2: Late**: 1-2 years
- **Stage 3**:
Patisiran in Development for hATTR Amyloidosis
Potential for Disease Modification by Reducing Pathogenic Protein

Genetically validated, liver-expressed target gene

Biomarker for POC in Phase 1

Definable path to potential approval and patient access

Mutant Transthyretin (TTR) is disease-causing protein

Serum Biomarker TTR

% Mean Serum TTR KD Relative to BL

Study Day

Clinical Endpoint Neurological Impairment Score

mNIS+7

Motor strength/weakness (192)

Quantitative Sensory Testing (80)

Reflexes (20)

Nerve Conduction Studies (2)

Postural BP or HRdb (2)

Patisiran Final Phase 2 OLE Study Results*
Study in hATTR Amyloidosis Patients with Polyneuropathy

Safety: Generally well tolerated out to 25 months (N=27)
- 10 non-drug related SAEs in 7 patients
- Majority of AEs mild to moderate, including mild flushing (22.2%) and mild infusion-related reactions (22.2%)
- No significant lab findings; no drug-related discontinuations
- No evidence of thrombocytopenia, renal toxicity, or systemic inflammatory effects

* Modified Neuropathy Impairment Score (mNIS+7) - Final Phase 2 OLE results; Adams et al., AAN, April 2017
1Adams D et al., Neurology. 85;675-682 (2015); 2Predicted progression of median NIS value from Gompertz curve fit
Patisiran Phase 2 OLE Preliminary Study Results*
Sweat Gland Nerve Fiber Density (SGNFD): Lower Limb

** 2-sided p values from paired t-test comparing post-baseline vs baseline
†Chao C et al., Ann Neurol. 78:272-83 (2015)
*Data as of February 23, 2016

** N=19
\[P = 0.0027 \]

** N=20
\[P < 0.001 \]

Mean (SEM) Change From Baseline

-1.0
-0.5
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0
5.5
6.0
6.5
7.0

0 6 12 18

Distal thigh sweat gland innervation† in Patient 050-0005

Green: PGP 9.5 (nerve fibers)
Red: CD31 (blood vessels)
Blue: DAPI (nuclei)
Phase 3 Study Design

N=225

Patient Population
- hATTR with polyneuropathy: any TTR mutation, Stages 1 and 2
- Neurological impairment score (NIS) of 5-130
- Prior tetramer stabilizer use permitted

2:1 randomization

Primary Endpoint at 18 months
- mNIS+7

Key Secondary Endpoints
- Norfolk QOL-DN
- NIS-weakness
- mBMI
- 10-meter walk

Patisiran IV q3W, 0.3 mg/kg

Placebo IV q3W

All completers eligible for patisiran treatment on Phase 3 OLE study (APOLLO-OLE)

Enrollment completed; mid-2017 top-line data readout, supporting 2017 NDA/MAA if positive

Statistical Considerations
- Placebo-estimated mNIS+7 progression rate of 17.8 points/year derived from natural history study of 283 hATTR patients with polyneuropathy
- 90% Power to detect a 37.5% difference in ΔmNIS+7 between treatment groups with 2-sided alpha=0.05
 - Based on original target enrollment of 200 patients
Hemophilia and Rare Bleeding Disorders

DESCRIPTION

Genetic deficiency resulting in inability to generate thrombin and stop bleeding

PATIENT POPULATION*

Hemophilia A and B

200,000 worldwide

~4,000 with inhibitors

Highest need is prophylaxis for inhibitor patients and to avoid inhibitor formation in all patients

Global need due to frequent IV infusions, ability to manufacture, and cold chain
Fitusiran in Development for Hemophilia
Potential to Restore Hemostasis in Hemophilia

Genetically validated, liver-expressed target gene

Biomarker for POC in Phase 1

Definable path to potential approval and patient access

Plasma Biomarkers
Antithrombin Lowering, Thrombin Generation

Fitusiran Phase 1 results: Pasi et al., WFH, July 2016

Photo courtesy of Guy Young, M.D. Director, Hemostasis & Thrombosis Center at Children’s Hospital Los Angeles and Professor of Pediatrics, USC Keck School of Medicine
Summary of Median ABRs in Patients without Inhibitors

- Median duration in observation period: 13 months [range: 2 – 19]
- Mean AT activity in observation period (relative to baseline): 22%

Summary of Median ABRs in Patients with Inhibitors

- Median duration in observation period: 6 months [range: 1 – 11]
- Mean AT activity in observation period (relative to baseline): 18%

Updated Safety in Phase 2 OLE (N=33)

- 3 SAEs considered possibly related to study drug
 - Fatal cerebral venous sinus thrombosis resulting in suspension of dosing and evaluation of enhanced safety monitoring, currently in planning
 - Asymptomatic transaminase elevation in HCV infected patient and seizure in patient with seizure history
- Majority of AEs mild or moderate in severity, unrelated to study drug
 - Mild ISRs in 6 (18%) patients
- ALT increases >3x ULN observed in 11 (33%) patients
 - All asymptomatic, with no concurrent elevations of bilirubin >2x ULN
 - Reversible; all patients had medical history of HCV
- No instances of anti-drug antibody formation

Clinical results as of Jun 15, 2017; Pasi et al., ISTH, July 2017; updated to reflect cerebral venous sinus thrombosis case noted in safety box
Recent Safety Update in Fitusiran Program

• Report of SAE of subarachnoid hemorrhage in Phase 2 OLE study in hemophilia A patient without inhibitors
 ◦ Reported as unrelated to fitusiran
 ◦ ~1 week prior to hospital admission for severe headache, patient experienced hip pain treated with 3 doses of FVIII, ranging from 31 to 46 IU/kg, on three separate days; doses are above recommended range for mild or moderate bleeds per product label
 ◦ CT scan was read as subarachnoid hemorrhage, and patient was treated with replacement factor therapy 2-3 times daily
 ◦ Clinical course deteriorated with subsequent cerebral edema and death

• Alnylam initiated further investigation including review of patient's CT scans by 3 independent neuro-radiologists, who all confirmed on Sept 1, 2017, that initiating event was cerebral venous sinus thrombosis, not subarachnoid hemorrhage

• Patient had higher FVIII exposure than any other patient in study

• Alnylam and its partner Sanofi Genzyme elected to suspend dosing in fitusiran studies to further investigate safety finding and develop risk mitigation plan
 ◦ Company also notified study investigators and global regulatory authorities

• Based on fitusiran benefit-risk profile, aim to resume dosing in fitusiran studies as soon as possible, potentially in late 2017, upon agreement with global regulatory authorities, and with appropriate protocol amendments for enhanced patient safety monitoring
Acute Hepatic Porphyrias

DESCRIPTION

Family of ultra-rare orphan diseases causing incapacitating and potentially fatal attacks

PATIENT POPULATION*

~5,000 Patients with sporadic attacks in U.S./EU

~1,000 Patients with recurrent attacks in U.S./EU

Disease burden includes:

- Acute, Severe Abdominal Pain
- Frequent Hospitalizations
- Peripheral and Autonomic Neuropathy
- Neuropsychiatric Symptoms
- Chronic Pain

Predominantly female, commonly misdiagnosed

*ORPHANET; The Porphyria Consortium
Givosiran Therapeutic Hypothesis

Heme Synthetic Pathway in AIP

- Glycine
- Succinyl CoA
- **ALAS1**
- ALA
- PBG
- Hydroxymethylbilane
- Heme

ALN-AS1 Effect in AIP

- Glycine
- Succinyl CoA
- Givosiran siRNA
- ALAS1
- ALA
- PBG
- Hydroxymethylbilane

Normalization of ALN & PBG levels results in amelioration of signs and symptoms of AIP.
Givosiran Interim Phase 1 Study Results*
Ongoing Randomized, Double-Blind, Placebo-Controlled Study in Recurrent Attack Porphyria Patients

Safety: (N=9)
- No drug-related SAEs and no discontinuations due to AEs
 - As reported previously, one patient developed acute pancreatitis complicated by pulmonary embolism resulting in death, considered unlikely related to study drug
- Majority of AEs mild-moderate in severity
- AEs possibly related include ISRs, hypersensitivity, myalgia, headache, moderate renal impairment (in patient with history of same), and erythema
- No clinically significant changes in vital signs, EKG, or clin labs

*Interim Phase 1 study results as of Apr 21, 2017; Sardh et al., *ICPP*, June 2017; ** Includes attacks treated in healthcare facility or with hemin
Givosiran Phase 3 Study Design
Randomized, Double-Blind, Placebo-Controlled Study, Followed by Open-Label Extension

N ~ 74

Patient Population
• Age ≥ 12 years
• Diagnosis of AHP
• ≥ 2 attacks within prior 6 months
• Willing to discontinue and/or not initiate hemin prophylaxis

Randomization
1:1 Randomization

Primary Endpoint:
• Attacks requiring hospitalization, urgent care visit, home IV hemin

Key Secondary Endpoints:
• ALA and PBG
• Hemin doses
• Symptoms
• QoL

Interim analysis when 30 patients complete 3 months treatment*

Statistical Considerations
• 70 patients will have at least 90% power to detect 45% reduction in annualized attack rate at 2-sided alpha of 0.05
• Unblinded interim analysis in 30 patients using endpoint of reduction in urinary ALA level at 3 months
 ➢ No plan to stop early for efficacy or futility

Open-Label Extension

*Preliminary plans subject to further diligence and health authority feedback
Alignment with FDA that reduction of urinary ALA is reasonably likely to predict clinical benefit

- Interim analysis with ~30 patients after 3 months dosing

Relationship of ALA Lowering with Annualized Attack Rate

* Sardh et al., ICPP, June 2017; Includes attacks treated in healthcare facility or with hemin
Summary

RNAi Platform
- Reproducible, modular drug development platform
- Applicable to any gene in the genome
 - 8 POCs achieved in the clinic
- Rapid path from concept to clinic
- Significant platform efficiencies in nonclinical, CMC and clinical development
- Over 1400 patients and healthy volunteers dosed across 10 programs
 - Relevance of safety learnings from one program to others in pipeline

Lessons Learned in Orphan Disease Space
- Patient input and engagement key at all phases of development cycle
 - Understanding unmet need, target product profile, natural history, study design, product presentation, outreach and education
- Potential for accelerated drug development
 - e.g., givosiran program biomarker-based interim analysis for acute hepatic porphyrias
- Aligning study design and endpoint structure between regulators, patients and payers key
- Value of Breakthrough (US) and Prime (EU) Designation
Thank You